- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Karthik, C_S (1)
-
Lee, Euiwoong (1)
-
Manurangsi, Pasin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
Bonnet, Édouard (1)
-
Rzążewski, Paweł (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bonnet, Édouard; Rzążewski, Paweł (Ed.)Parameterized Inapproximability Hypothesis (PIH) is a central question in the field of parameterized complexity. PIH asserts that given as input a 2-CSP on k variables and alphabet size n, it is 𝖶[1]-hard parameterized by k to distinguish if the input is perfectly satisfiable or if every assignment to the input violates 1% of the constraints. An important implication of PIH is that it yields the tight parameterized inapproximability of the k-maxcoverage problem. In the k-maxcoverage problem, we are given as input a set system, a threshold τ > 0, and a parameter k and the goal is to determine if there exist k sets in the input whose union is at least τ fraction of the entire universe. PIH is known to imply that it is 𝖶[1]-hard parameterized by k to distinguish if there are k input sets whose union is at least τ fraction of the universe or if the union of every k input sets is not much larger than τ⋅ (1-1/e) fraction of the universe. In this work we present a gap preserving FPT reduction (in the reverse direction) from the k-maxcoverage problem to the aforementioned 2-CSP problem, thus showing that the assertion that approximating the k-maxcoverage problem to some constant factor is 𝖶[1]-hard implies PIH. In addition, we present a gap preserving FPT reduction from the k-median problem (in general metrics) to the k-maxcoverage problem, further highlighting the power of gap preserving FPT reductions over classical gap preserving polynomial time reductions.more » « less
An official website of the United States government
